
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024 1829

Towards Practical Oblivious Join Processing
Zhao Chang , Dong Xie, Sheng Wang, Feifei Li, and Yulong Shen

Abstract—In cloud computing, remote accesses over the cloud
data inevitably bring the issue of trust. Despite strong encryption
schemes, adversaries can still learn sensitive information from
encrypted data by observing data access patterns. Oblivious RAMs
(ORAMs) are proposed to protect against access pattern attacks.
However, directly deploying ORAM constructions in an encrypted
database brings large computational overhead. In this work, we
focus on oblivious joins over a cloud database. Existing studies in
the literature are restricted to either primary-foreign key joins or
binary equi-joins. Our major contribution is to support general
band joins and multiway equi-joins. For oblivious join without
ORAMs, we extend the existing binary equi-join algorithm to
support general band joins obliviously. For oblivious join with
ORAMs, we integrate B-tree indices into ORAMs for each input
table and retrieve blocks through the indices in join processing. The
key point is to avoid retrieving tuples that make no contribution
to the final join result and bound the number of accesses to each
B-tree index. The effectiveness and efficiency of our algorithms
are demonstrated through extensive evaluations over real-world
datasets. Our method shows orders of magnitude speedup for obliv-
ious multiway equi-joins in comparison with baseline algorithms.

Index Terms—Data privacy, oblivious index, oblivious join,
oblivious RAM.

I. INTRODUCTION

MANY cloud service providers offer cloud-based database
systems such as Amazon RDS and Redshift, Azure SQL,

and Google Cloud SQL. Data encryption is a necessary step for
keeping sensitive information secure and private on a cloud.
To that end, encrypted databases such as Cipherbase [1], [2],
CryptDB [3], TrustedDB [4], SDB [5], and Monomi [6], as well
as related query execution techniques [7], [8], [9], [10] have been
developed. But query access patterns still pose a privacy threat
and leak sensitive information [11], [12], [13], [14]. It is possible
to analyze the importance of different areas in the database, e.g.,
by counting the frequency of accessing data items [15], [16],
[17], [18]. With background knowledge, the server may learn a
lot about user queries and/or data [11], [19], [20].

Manuscript received 25 October 2022; revised 4 May 2023; accepted 26
August 2023. Date of publication 1 September 2023; date of current version
8 March 2024. This work was supported in part by the National Key R&D
Program of China under Grant 2021YFB3101100 and in part by the National
Natural Science Foundation of China under Grants 62220106004, 61972308,
and 62302368. This work was partially done when Zhao Chang worked as a
visiting scholar at Alibaba DAMO Academy. Recommended for acceptance by
M. A. Cheema. (Corresponding author: Yulong Shen.)

Zhao Chang and Yulong Shen are with the Xidian University, Xi’an 710126,
China (e-mail: changzhao@xidian.edu.cn; ylshen@mail.xidian.edu.cn).

Dong Xie is with the The Pennsylvania State University, State College, PA
16801 USA (e-mail: dongx@psu.edu).

Sheng Wang and Feifei Li are with the Alibaba Group, Hangzhou 311121,
China (e-mail: sh.wang@alibaba-inc.com; lifeifei@alibaba-inc.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TKDE.2023.3310038, provided by the authors.

Digital Object Identifier 10.1109/TKDE.2023.3310038

Fig. 1. Strawman solution to oblivious many-to-many join.

Oblivious RAMs (ORAMs) [21], [22], [23] allow the client
to access encrypted data on a server without revealing her
access patterns. However, most ORAM constructions are still
too expensive to be deployed in a large database [11]. Recent
studies [14], [24], [25], [26], [27], [28], [29] also explore build-
ing oblivious data structures or indices over encrypted data, but
none of them support complex queries (e.g., joins). The key point
is that ORAM does not protect the number of block accesses
inherently for a general query operator. Hence, existing solutions
to integrating indices into ORAMs leak the number of accesses
to any index in processing. We will address the security issue in
our algorithms in Sections V and VI.

Joins are commonly used operations in relational databases. In
this work, we consider the problem of computing join functions
in an oblivious way. Li and Chen [30] first studies oblivious
theta-joins, but their algorithms are no better than a Cartesian
product. Arasu and Kaushik [13] presents oblivious algorithms
for a rich class of database queries including equi-joins. How-
ever, Krastnikov et al. [31] points out that the details in [13] are
incomplete, and no practical implementation is provided to show
the empirical results. Opaque [12] and ObliDB [32] are efficient
only for the special case of one-to-many equi-join, e.g., primary-
foreign key join. Krastnikov et al. [31] proposes a novel oblivious
algorithm for general binary equi-joins. However, it is non-trivial
to extend the algorithm to join multiple tables obliviously. A
series of oblivious binary joins will disclose the intermediate
table sizes, which may leak some sensitive information, e.g.,
data distribution or sparseness of the intermediate join graph.
ObliDB [32] offers an oblivious hash join algorithm to support
general equi-joins over multiple tables, but it is equivalent to a
Cartesian product. Table I shows the comparison of oblivious
join algorithms.

Example 1: Fig. 1 shows that Opaque Join [12] and 0-OM
Join [32] do not work for many-to-many join, due to leaking
some sensitive information (e.g., join degree).

Given two input tables T1 and T2, they first put tuples from
both input tables into one single table T , and obliviously sort T
according to the join key. Next, they perform a linear scan over
the single sorted table T , and join each tuple originally from T1

with the corresponding tuples originally from T2.
In the original setting, they need to ensure the invariant that

after accessing every input tuple in T , they write out exactly

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6846-7614
https://orcid.org/0000-0002-8448-705X
mailto:changzhao@xidian.edu.cn
mailto:ylshen@mail.xidian.edu.cn
mailto:dongx@psu.edu
mailto:sh.wang@alibaba-inc.com
mailto:lifeifei@alibaba-inc.com
https://doi.org/10.1109/TKDE.2023.3310038

1830 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

TABLE I
COMPARISON OF OBLIVIOUS JOIN ALGORITHMS

one real or dummy join record. But for many-to-many join, they
cannot keep the invariant above. For example, after accessing
tupleT2(2, 1), which can match two tuplesT1(2, 1) andT1(2, 2),
they must write out two join records T1(2, 1) �� T2(2, 1) and
T1(2, 2) �� T2(2, 1) before the next access over T , i.e., the
number of output records between two accesses over T leaks
the join degree. Processing tuples T2(2, 2) and T2(2, 3) brings
the same security issue.

In summary, prior studies are still unable to address the major
challenge in oblivious join. They are only efficient for foreign
key join [12], [32], or restricted to binary join [31], or not leading
to practical implementation [13], [30].

Our major objective is to support general band joins and
multiway equi-joins obliviously. Band join [34] is a binary join
between tables T1 and T2 on numeric attributes T1.A and T2.B
with the join condition T1.A− c1 ≤ T2.B ≤ T1.A+ c2, where
c1 and c2 are numeric values satisfying c1 ≥ 0 and c2 ≥ 0. In
particular, a band join will reduce to a binary equi-join, when
c1 = c2 = 0. First, we extend the binary equi-join algorithm in
Krastnikov et al. [31] to support general band joins obliviously.
Second, we propose two band join algorithms using ORAMs:
sort-merge join and index nested-loop join. We integrate B-tree
indices into ORAMs for input tables and retrieve blocks through
indices obliviously to perform our algorithms. The key point is
to bound the number of accesses to any index. Furthermore, we
extend the index nested-loop join to support multiway equi-joins
obliviously. The key idea is to avoid retrieving tuples that make
no contribution to the final join result and bound the total number
of block accesses. Note that ORAM can be viewed as a blackbox,
providing read and write interface, while hiding access patterns.
We can introduce some novel ORAMs (e.g., [35], [36], [37])
to improve the performance. We can also leverage other types
of indices (e.g., Oblix [26]) rather than B-tree to perform
our algorithms, as long as they can support both point and
range queries obliviously. Our major contributions are listed as
follows.

� We extend the binary equi-join algorithm in Krastnikov
et al. [31] to support general band joins obliviously in
Section IV. Note that existing studies (except [30]) do not
work for any non-equi joins.

� We also propose two band join algorithms using ORAMs:
sort-merge join and index nested-loop join in Section V-A
and V-B. The key point is to bound the number of accesses
to each B-tree index.

� We support acyclic equi-joins over multiple tables oblivi-
ously using index nested-loop join in Section VI. We avoid
retrieving tuples that make no contribution to the final join
result and bound the total number of block accesses.

� We conduct extensive experiments on real-world datasets
in Section IX. The results demonstrate a superior perfor-
mance gain (orders of magnitude speedup for oblivious
multiway equi-joins) over baseline algorithms.

II. BACKGROUND AND RELATED WORK

A. Generic ORAMs and Path-ORAM

Generic ORAMs: ORAM [21], [22], [23] allows the client
to access encrypted data in the server while hiding her access
patterns. ORAM is modeled similar as a key-value store and
hides the access patterns with the same length of operations (i.e.,
get() and put()) to make them computationally indistin-
guishable to the server. It consists of two components: an ORAM
data structure and an ORAM query protocol. The client and
server run the ORAM query protocol to read and write any data
to the ORAM data structure. A few advanced ORAMs [38], [39],
[40], [41], [42], [43], [44] work on file systems, multiple clients,
parallelization, asynchronicity and distributed data stores. We
may leverage them as our secure ORAM storage, since we treat
ORAM as a blackbox.

Path-ORAM: In this work, we adopt Path-ORAM [45] due to
good performance and simplicity. It organizes the ORAM data
structure as a full binary tree where each node is a bucket with a

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: TOWARDS PRACTICAL OBLIVIOUS JOIN PROCESSING 1831

fixed number of encrypted blocks. It maintains the invariant that
at any time, each block b is always placed in some bucket along
the path to the leaf node that b is mapped to. The stash stores
a few blocks that have not been written back to the binary tree
in server. The position map keeps track of the mapping between
blocks and leaf node IDs, which brings a linear space cost to the
client. To storeN blocks of sizeB, a basic Path-ORAM requires
O(logN+N/B) client memory and O(logN) cost per query.

B. Oblivious Sorting and Filtering

Oblivious Sorting: Items can be sorted by accessing in a
fixed, predefined order. Bitonic sort [46] needs O(N log2 N)
time cost but with small constant factor. It can be extended
to an oblivious external sort with O(N log2(N/M)) time cost
using client memory size M [12], [32]. A few algorithms [47],
[48], [49] achieve O(N logN) time cost but may fail with a
small probability [48], or lead to large constant factors [47] and
non-trivial implementation [49]. Recently, Shi [28] proposes an
oblivious heap sort with O(N logN) time cost, which works
better in memory but is not IO-efficient.

Oblivious Filtering: Dummy records can be removed by
oblivious filtering. Prior studies [12], [13], [30] and the confer-
ence version [50] adopt an oblivious sorting to filter out dummy
records. Actually, it can be done by oblivious compaction.
OptORAMa [37] achieves this in O(N) time but needs some
non-trivial techniques. In this work, we adopt a simple oblivious
compaction algorithm [33] withO(N logM N) time cost, where
M is trusted memory size.

C. Oblivious Data Structure and Index

Prior studies [14], [24], [25], [26], [27], [28], [29] build
oblivious tree structures or indices. For certain data structure
whose access pattern exhibits some predictability, they make
the structure “oblivious” to improve the performance rather than
bluntly storing blocks from the structure into ORAM.

ORAM+B-Tree: B-tree indices can be introduced to speed
up the oblivious query processing [32], [51]. The client ignores
the semantic difference of (encrypted) index and data blocks
and stores them into ORAM. When answering any query, the
client starts with retrieving the root block (of the index) from
the server and then traverse down the tree. Intuitively, the client
queries the index by running the same algorithm as that over a
standard B-tree. The only difference is that each index or data
block is retrieved through ORAM.

Oblivious B-Tree: Oblivious B-tree [32], [51] is designed to
avoid storing the position map in client. The main idea is that
each index node keeps block IDs and position tags of its children
nodes. When retrieving any node through ORAM, we have
acquired the position tags of its children nodes simultaneously.
Note that most query algorithms over tree indices traverse the
tree from the root to leaf nodes. As a result, the client only needs
to remember the position tag of the root node, and all other
position map information can be fetched on the fly as part of the
query algorithm.

Index Caching: Index caching is a popular tree-based ORAM
optimization [35], [52], [53]. The client can cache one specific
level of B-tree index to speed up the query performance. Due to
large fanout in B-tree index, this overhead to the client storage
is far less than storing the entire index.

Note that the techniques above do not protect how many ac-
cesses to the data structure. In our method, we integrate indices
into ORAMs and address the security issue in the scenario of

oblivious join, as long as the indices support both point and range
queries obliviously.

D. Oblivious Query Processing

Xie et al. [54] proposes ORAM solutions to shortest path
computation. ZeroTrace [53] supports oblivious get/put/insert
operations over set/dictionary/list interfaces. Obladi [55] pro-
vides ACID transactions while hiding access patterns. OCQ [56]
performs oblivious coopetitive analytics in a decentralized man-
ner. Snoopy [57] designs an oblivious storage based on oblivious
load balancer and subORAMs. Chu et al. [58] focuses on dif-
ferentially oblivious join whose problem definition is different
from our work.

Note that existing solutions [12], [31], [32] rely on Trusted
Execution Environments (TEE) (e.g., Intel SGX [59], [60]).
However, TEE is orthogonal to oblivious algorithms and has
no advantage to the obliviousness.

E. Other Related Work

Secure Multi-Party Computation: Secure multi-party compu-
tation (MPC) allows multiple parties to perform data analytics
over their private data, while no party learns the data from
another party. Hence, MPC-based solutions [56], [61], [62],
[63], [64], [65] have a different problem setting from our cloud
database setting.

Differential privacy: Differential privacy (DP) protects
against attacks with guaranteed probabilistic accuracy. They
build index [66] and key-value data collection [67], and sup-
port general SQL queries [68], [69], [70]. However, DP-based
solutions [66], [67], [68], [69], [70], [71], [72], [73] provide
differential privacy for query results, while we provide the
obliviousness in query processing.

III. PROBLEM DEFINITION AND OVERVIEW

The formulation includes a client and a cloud server. The
client, who has a small and secure memory, stores her data into
the large but untrusted cloud storage. In online processing, the
client issues join queries against the server.

We follow the definition in Opaque [12] and ObliDB [32]. Let
D be the relational database (where some B-tree indices may be
integrated) in the cloud andQ be a join query. Let Size(D) be the
sizing information of database D, which includes numbers and
sizes of tables, rows, columns, and attributes in D, but does not
include any attribute values. Let Sch(D) be the schema infor-
mation of database D, which includes table and column names
in D (easily hidden using encryption). Let IOSize(D,Q) be the
input/output sizes of running Q over D. Note that IOSize(D,Q)
does not include the sizes of all intermediate join tables for
any join query Q over multiple tables in D, which must be
protected against the adversary. Let Trace(·) be the trace of
server location accesses and network traffic patterns in query
processing. Table II lists the notations used in this paper.

Definition 1: Oblivious Join [12]. For any two relational
databases D and D′ and two join queries Q and Q′, where
Size(D) = Size(D′), Sch(D) = Sch(D′) and IOSize(D,Q) =
IOSize(D′, Q′), we denote the access patterns produced by the
join algorithm OJoin running Q and Q′ over D and D′ as
Trace(OJoin(D,Q)) and Trace(OJoin(D′, Q′)). OJoin is an
oblivious join algorithm, if

1) OJoin ensures the confidentiality; and

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

1832 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

TABLE II
NOTATIONS

2) access patterns Trace(OJoin(D,Q)) and Trace(OJoin
(D′, Q′)) have the same length and computationally indistin-
guishable for anyone but the client.

We support two oblivious join approaches including non-
ORAM approach (see Section IV) and ORAM approach (see
Sections V and VI). In preprocessing stage, the client parti-
tions the data into blocks and encrypts these data blocks. In
particular for ORAM approach, the client builds an ORAM
data structure (e.g., Path-ORAM) over the encrypted blocks and
integrates some B-tree indices into the ORAM data structure
using ORAM+B-tree or oblivious B-tree (see Section II-C).
Then, the client uploads the encrypted blocks or the ORAM
data structure to the cloud storage, and keeps the encryption
keys and other metadata (e.g., ORAM stash and position map
in Path-ORAM) at her side. In online processing, the client
runs the oblivious join algorithms by performing a series of
oblivious operations or ORAM operations, which reads/writes
blocks from/to the server and generates the query results.

Segmenting ORAM: In ORAM approach, we separate one
single ORAM into multiple smaller ORAMs (denoted as Se-
pORAM) to reduce the cost of each ORAM access, as in
ObliDB [32]. For each input table, we build an ORAM for
data blocks and another smaller ORAM for index blocks. The
comparison in Table I is based on this setting. We also consider
one single ORAM setting (denoted as OneORAM) and make
the related discussion in Section VII.

Security Model: We consider a “honest-but-curious” server.
Data is encrypted, retrieved, and stored in atomic units (i.e.,
blocks). All blocks are of the same size and are indistinguishable
for the server. We useN to denote the number of real data blocks
in the database, and each encrypted block contains B bytes.
Note that the number of entries that fit in a block is Θ(B), and
the constants will vary depending on the types of entries, e.g.,
encrypted index entry, encrypted attribute value, and position
tag in ORAM.

By default, we follow the security guarantee in Definition 1
in both non-ORAM approach and ORAM approach (including
both SepORAM and OneORAM settings). We provide the se-
curity analysis and proof in Section VIII.

We also introduce a padding mode to ease the volume leak-
age in final output size, as in Opaque [12] and ObliDB [32].

The join result size will be padded to an upper bound size,
which leaks nothing regarding the join query but the upper
bound size. Besides, we may introduce some novel padding
techniques. For example, explore differential privacy rather than
full obliviousness to reduce the padding size [69], or pad the
result size to the closest power of a constant x (e.g., 2 or
4) [74], [75], [76], leading to at most logx |Rworst| distinct
result sizes, where |Rworst| is the Cartesian product size in join
scenario.

Note that our approaches do not consider privacy leakage
through any side-channel attack (like time taken for each op-
eration). Prior orthogonal studies [77], [78], [79] can help to
alleviate such leakage.

IV. OBLIVIOUS BAND JOIN WITHOUT ORAM

We extend the binary equi-join algorithm in Krastnikov
et al. [31] to support general band join obliviously. First, we
obliviously compute the degree information in the join graph.
Second, we obliviously make copies for each tuple according to
the join degree and perform an oblivious one-to-one mapping
operation to generate the final join output.

A. Join Degree Computation

Algorithm 1 shows the details of join degree computation.
For each input table Ti(j, d), we denote the join key as j and the
remaining attributes as d. We mainly focus on table T1, and the
computation on T2 goes in a similar way.

First, we obliviously sort T1 and T2 lexicographically by
(j, d), and add a unique id to each tuple (Line 1–4). We pa-
rameterize oblivious sorting with a lexicographic ordering on
chosen attributes, e.g., OSort(Ti)〈j ↑, d↑〉 sorts Ti by increasing
j attribute, followed by increasing d attributes.

Then, we aim to generate augmented tables T̃1 and T̃2 with
join degree α and position pos, such that each tuple t̃1 ∈ T̃1

matches t̃1.α tuples in T̃2, where each matched tuple t̃2 has a
unique t̃2.id ∈ (t̃1.pos, t̃1.pos+ t̃1.α] (Line 5–15).

Specifically, we generate two auxiliary tables TR and TS

for T1, where TR.j ← T1.j − c1 and TS .j ← T1.j + c2 (Line
6–7). Suppose tuple t1 ∈ T1 corresponds to tuples tR ∈ TR and
tS ∈ TS . According to the join condition, any tuple t2 ∈ T2

with t2.j ∈ [tR.j, tS .j] will match t1 ∈ T1. Then, we generate
augmented tables T̃R and T̃S with position pos, such that any
tuple t2 ∈ T2 with t2.id ∈ (t̃R.pos, t̃S .pos] will match t1 ∈ T1,
with the help of a union TU of tables TR, TS and T2 (Line 8–13).
Finally, we generate T̃1 from T̃R and T̃S , where the position
T̃1.pos← T̃R.pos and the join degree α← T̃S .pos− T̃R.pos
(Line 14).

Algorithm 1 takes O((|T1|+ |T2|) log(|T1|+ |T2|)) time
cost, when an oblivious sort needs O(n log n) time cost [28].

Example 2: An example is given in Fig. 2. We mainly focus
on table T1. First, we sort T1 and T2 lexicographically by (j, d)
(Line 1–4). Then, we generate two auxiliary tables TR and
TS , where TR.j ← T1.j − 2 and TS .j ← T1.j + 1 (Line 6–7).
Note that t1 = (3, 4, 3) ∈ T1 corresponds to (3, 2, 3) ∈ TR and
(3, 5, 3) ∈ TS . According to the join condition, (2, 2, 2), (3, 2, 4)
and (4, 5, 3) ∈ T2 with j ∈ [2, 5] are 3 matches of t1 ∈ T1.

Now, we compute a union TU of tables TR, TS and T2, and
sortTU lexicographically by (j, tid:TR < T2 < TS) (Line 8–9),
e.g., (3, 2, 3, TR) < (2, 2, 2, T2) = (3, 2, 4, T2)< (1, 2, 2, TS).
Note that (2, 2, 2, T2), (3, 2, 4, T2) and (4, 5, 3, T2) are 3 matches
of (3, 4, 3) ∈ T1, and they all rank between (3, 2, 3, TR) and

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: TOWARDS PRACTICAL OBLIVIOUS JOIN PROCESSING 1833

Fig. 2. Example of join degree computation.

Fig. 3. Example of table expansion and alignment.

Algorithm 1: Join Degree Computation.

Require: Input: two tables T1(j, d) and T2(j, d) with join
condition T1.j − c1 ≤ T2.j ≤ T1.j + c2.
Output: T̃1(id, j, d, pos, α) and T̃2(id, j, d, pos, α).

1: for i← 1 to 2 do
2: Ti ← OSort(Ti)〈j ↑, d ↑〉;
3: Ti(id, j, d)← Ti(id← ID, j, d); � add id column
4: end for
5: for i← 1 to 2 do
6: TR(id, j, d)← Ti(id, j − ci, d);
7: TS(id, j, d)← Ti(id, j + c3−i, d);
8: TU (id, j, d, tid)← TR ∪ TS ∪ T3−i; � add tid

column
9: TU ← OSort(TU)〈j ↑, tid : TR < T3−i < TS〉;
10: TU (id, j, d, tid, pos)← Fill-Pos(TU);
11: TU ← OSort(TU)〈tid : TR < TS < T3−i, id ↑〉;
12: T̃R ← πid,j,d,pos(TU [1 . . . |Ti|]);
13: T̃S ← πid,j,d,pos(TU [|Ti|+ 1 . . . 2|Ti|]);
14: T̃i ← Ti(id, j, d, pos← T̃R.pos, α←

T̃S .pos− T̃R.pos);
15: end for
16: return T̃1 and T̃2;

(3, 5, 3, TS) in TU . We scan TU and assign the current number
of tuples with tid = T2 to TU .pos (Fill-Pos(TU) in Line 10).

After that, we extract T̃R and T̃S from TU by re-sorting
TU (Line 11–13). Finally, we generate T̃1 from T̃R and T̃S ,
where T̃1.pos← T̃R.pos and T̃1.α← T̃S .pos− T̃R.pos (Line
14). Note that t̃1 = (3, 4, 3, 1, 3) ∈ T̃1 matches t̃1.α = 3 tu-
ples in T̃2, (2, 2, 2, 0, 3), (3, 2, 4, 0, 3) and (4, 5, 3, 2, 1) with
id ∈ (1, 4] = (t̃1.pos, t̃1.pos+ t̃1.α].

B. Table Expansion and Alignment

Algorithm 2 shows the details of table expansion and align-
ment. After obtaining the join degree α, we need to make
copies for each tuple based on α (aka table expansion). We
obliviously expand each T̃i into table Si using Algorithm 4
in [31], where Si consists of α (contiguous) copies of each
tuple (id, j, d, pos) ∈ T̃i (Line 2). Then, we obliviously align

Algorithm 2: Table Expansion and Alignment.

Require: Input: two tables T̃1(id, j, d, pos, α) and
T̃2(id, j, d, pos, α) with band join parameters c1 and c2.
Output: join result table Tout(j1, d1, j2, d2).
1: for i← 1 to 2 do
2: Si(id, j, d, pos)← OExpand(T̃i, α);
3: Si(id, j, d, pos, gid)← Si(id, j, d, pos, gid← IDid);
4: Si(id, j, d, pos)← Si(id, j, d, pos← pos+ gid);
5: end for
6: S2 ← OSort〈pos ↑, id ↑〉(S2);
7: Tout(j1, d1, j2, d2)← (S1.j, S1.d, S2.j, S2.d);
8: return Tout;

S2 with S1 (aka table alignment), so that each join record
corresponds to a row of S1 and a row of S2 with match-
ing index (Line 3–6). Finally, we generate the join output
table Tout by concatenating (j, d) attributes in S1 and S2

(Line 7).
Example 3: An example is given in Fig. 3. First, we oblivi-

ously expand each T̃i into table Si (Line 2). For example, for
tuple t̃1 = (3, 4, 3, 1) ∈ T̃1(id, j, d, pos), we make t̃1.α = 3
copies of t̃1 to match (2, 2, 2, 0), (3, 2, 4, 0) and (4, 5, 3, 2) in
T̃2(id, j, d, pos) with T̃2.id ∈ (t̃1.pos, t̃1.pos+ t̃1.α] = (1, 4].

Then, we obliviously align S2 with S1 (Line 3–6).
1) We perform a grouping identity operation by scanning Si

(Line 3). For example, t̃1’s 3 copies (3, 4, 3, 1, 1), (3, 4, 3, 1, 2)
and (3, 4, 3, 1, 3) belong to the same group, and each gets a
different gid = 1, 2 and 3.

2) We update pos attribute as pos← pos+ gid in table Si

(Line 4). After that, t̃1’s 3 copies in S1 will be (3, 4, 3, 2),
(3, 4, 3, 3) and (3, 4, 3, 4), and t̃1’s 3 matches in S2 will be
(2, 2, 2, 3), (3, 2, 4, 3) and (4, 5, 3, 3). Now, any tuple s2 ∈ S2

matches the only one tuple s1 ∈ S1, where s1.id = s2.pos and
s1.pos = s2.id.

3) After 2), S1 has been permutated lexicographically by
(id, pos). Hence, we obliviously sort table S2 lexicographically
by (pos, id) to achieve the table alignment (Line 6).

Finally, we generate the join output table Tout by simply
concatenating (j, d) attributes in S1 and S2 (Line 7).

Algorithm 2 consists of two parts: table expansion and table
alignment. We assume an oblivious sorting needs O(n log n)
time cost [28]. For oblivious table expansion, the time cost
is O((|T1|+ |T2|) log(|T1|+ |T2|) + |Rreal| log |Rreal|). For
oblivious table alignment, the time cost isO(|Rreal| log |Rreal|).
Hence, the total time cost is O((|T1|+ |T2|) log(|T1|+ |T2|) +
|Rreal| log |Rreal|).

V. OBLIVIOUS BAND JOIN WITH ORAM

A. Oblivious Sort-Merge Join

Our algorithm is similar to the traditional sort merge join
but with some differences. In preprocessing, we integrate non-
clustered B-tree indices into ORAMs for each input table in
advance, where each leaf index entry keeps a pointer to the data
tuple. Leaf index entries are sorted as per the attribute. For each
input table, we build an ORAM structure for data blocks and
another smaller one for index blocks.

In each join step, we keep the invariant that we retrieve the
tuple needed from each input table alternatively. A dummy tuple
is retrieved as necessary. It ensures the full obliviousness, since

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

1834 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Algorithm 3: Oblivious Sort-Merge Band Join.

Require: Input: two tables T1(j, d) and T2(j, d) with join
condition T1.j − c1 ≤ T2.j ≤ T1.j + c2.
Output: join result table Tout.

1: Initialize Tout ← ∅.
2: Initialize t1, t2 ← ∅.
3: for i← 1 to 2 do
4: ti ← Ti.getFirst();
5: end for
6: while t1 �=⊥ or t2 �=⊥ do
7: res← t2.j − t1.j;
8: if −c1 ≤ res ≤ c2 then
9: begin← t2;
10: while −c1 ≤ res ≤ c2 do
11: Tout.put(Join(t1, t2));
12: T1.getDummy(); t2 ← T2.getNext();
13: res← t2.j − t1.j;
14: end while
15: Tout.put(⊥);
16: t2 ← begin;
17: t1 ← T1.getNext(); T2.getDummy();
18: else
19: Tout.put(⊥);
20: if res > c2 then
21: t1 ← T1.getNext(); T2.getDummy();
22: else
23: T1.getDummy(); t2 ← T2.getNext();
24: end if
25: end if
26: end while
27: Tout ← OFilter(Tout);
28: return Tout;

each tuple retrieval needs the same number of ORAM accesses
for each input table. Then, we perform a join comparison in each
step. If there is a match, we write out a join record; otherwise,
we write out a dummy record as necessary.

Algorithm 3 joins two tablesT1 andT2. Whenever we perform
a getNext() over one input table (T1 or T2), we also perform a
dummy operation getDummy() over the other table (T2 or T1)
to ensure the obliviousness.

First, Algorithm 3 initializes Tout := ∅ (Line 1). Then, we
retrieve the first two tuples from T1 and T2 as t1 and t2 (Line 2–
5). While either t1 or t2 is real, we compute the join comparison
result “res” between them (Line 6–7). We keep the invariant
above that we always pull tuples from T1 and T2 alternatively
for either of two possible cases:

1) t1 matches t2: First, we save the current t2 to a temporary
tuple “begin” (Line 9). We keep writing out the join record
Join(t1, t2) to Tout, and retrieving the next tuple from T2 as
t2, until the newly retrieved t2 does not match t1 (Line 10–14).
Once they do not match, we write out a dummy record and assign
“begin” back to t2 (Line 15–16). Finally, we will retrieve the
next tuple from T1 (Line 17) and move to the next iteration (Line
6–7).

2) t1 does not match t2: Since they do not match, we first
write out a dummy record (Line 19). If res > c2, we retrieve
the next tuple from T1 (Line 20–21). Otherwise, we retrieve the
next tuple from T2 (Line 22–23). Finally, we move to the next
iteration (Line 6–7).

Fig. 4. Example of sort-merge join with ORAMs.

After both cursors reach the end of tables T1 and T2, the final
step is to obliviously filter out dummy records from Tout (see
“Oblivious filtering” in Section II-B) and only keep real join
records (Line 27).

Example 4: An example is given in Fig. 4. First, we retrieve t1
← T1(1, 2) and t2← T2(1, 3) from T1 and T2 (Line 2–5). Since
the join comparison result res = 0 ∈ [−c1, c2] (Line 7), we can
conclude t1 matches t2 (Line 8). Then, we assign t2=T2(1, 3) to
“begin” (Line 9). We keep writing out Join(t1, t2) and retrieving
the succeeding tuples T2(2, 2), T2(2, 4) and T2(5, 3) from T2 as
t2, until t2=T2(5, 3) does not match t1=T1(1, 2) (Line 10–14).
Once they do not match, we write out a dummy record and assign
“begin” = T2(1, 3) back to t2 (Line 15–16). Finally, we retrieve
the next tuple T1(3, 1) from T1 (Line 17) and move to the next
iteration (Line 6–7).

Then, consider t1 ← T1(4, 3) and t2 ← T2(1, 3). Since the
join comparison result res < −c1 (Line 7), we can conclude t1
does not match t2 (Line 18). Since they do not match, we first
write out a dummy record (Line 19). If res > c2, we retrieve
the next tuple from T1 (Line 20–21). Otherwise (i.e., res < −c1
for T1(4, 3) and T2(1, 3)), we retrieve the next tuple T2(2, 2)
from T2 (Line 22–23). Finally, we move to the next iteration
(Line 6–7).

In particular, when the cursor on T1 moves to T1(4, 3) and
that on T2 reaches the end of T2, we will retrieve a dummy tuple
⊥ from T2 (Line 12) and let res = +∞ > c2 (Line 13). The rest
still goes in the same way as stated above.

After both cursors reach the end of tables T1 and T2, the final
step is to obliviously filter out dummy records from Tout (Line
27).

Theorem 1 shows that the number of join steps is a function
of the sizes of input tables and real join result, i.e., no additional
information is leaked except for the sizing information of input
and output tables.

Theorem 1: 1 For any two input tables T1 and T2 and the real
join result Rreal, let Numjs be the number of join steps from
each input table. It is a function of |T1|, |T2| and |Rreal|. We
have

Numjs = f(|T1|, |T2|, |Rreal|) = |T1|+ |T2|+ |Rreal|+ 1.

Proof: We divide the process of Algorithm 3 into two parts
and compute the number of join steps in each part.

Part I: The process except for Line 10-14 in Algorithm 3.
In the first step, we invoke getFirst() once forT1 andT2 (Line

3–4). Note that each join step leads to one join comparison. In
Part I, each join comparison leads to writing out one dummy
record. If the comparison result is res > c2, the cursor on T1

advances (Lines 17 and 21); otherwise, the comparison result is

1Due to space limit, proofs of theorems, complexity analyses and implemen-
tation details of our algorithms are given in full version [80].

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: TOWARDS PRACTICAL OBLIVIOUS JOIN PROCESSING 1835

Algorithm 4: Oblivious Index Nested-Loop Band Join.

Require: Input: two tables T1(j, d) and T2(j, d) with join
condition T1.j − c1 ≤ T2.j ≤ T1.j + c2.
Output: join result table Tout.

1: Initialize Tout ← ∅.
2: Initialize t1, t2 ← ∅.
3: for i← 1 to |T1| do
4: t1 ← T1.getNext();
5: t2 ← T2.getFirst(t1.j − c1);
6: while t1.j − c1 ≤ t2.j ≤ t1.j + c2 do
7: Tout.put(Join(t1, t2));
8: T1.getDummy();
9: t2 ← T2.getNext();
10: end while
11: Tout.put(⊥);
12: end for
13: Tout ← OFilter(Tout);
14: return Tout;

res < −c1, and the cursor onT2 advances (Line 23). The process
above will end when both cursors reach the end of T1 and T2.
Hence, we will invoke getNext() |T1|+ |T2| times. Therefore,
the total number of join steps in Part I is |T1|+ |T2|+ 1.

Part II: The process in Line 10-14 in Algorithm 3.
Note that each join step leads to one join comparison. In Part

II, each join comparison leads to writing out one real join record.
Since the number of real join records is |Rreal|, the number of
join steps in Part II is also |Rreal|.

Based on Part I and II, Numjs = |T1|+ |T2|+ |Rreal|+ 1.

B. Oblivious Index Nested-Loop Join

In our index nested-loop join, we integrateB-tree indices into
ORAMs for each input table and retrieve tuples by querying the
indices through ORAMs. In detail, the outer loop is to scan table
T1. While accessing each tuple in T1, the algorithm retrieves
matched tuples from table T2 through B-tree index. In each join
step, we ensure the invariant that we retrieve the tuple needed
from each input table alternatively. A dummy tuple is retrieved
from table T1 as necessary. The difference on two tables is that
we retrieve tuples from T1 one by one according to sequential
block IDs, while for table T2 we retrieve the tuple that we need
by searching over a whole B-tree path. After each pair of tuple
retrievals, we make a join comparison of the current two tuples.
If there is a match, we write out the join record; otherwise, a
dummy record is output as necessary.

Algorithm 4 joins two tables T1 and T2. Algorithm 4 begins
with initializing an empty output table Tout (Line 1). The outer
loop is to iterate over each tuple in table T1 (Line 3). Each time
we retrieve a new tuple t1 from T1 (Line 4), we first retrieve
a tuple t2 from T2, which is the first tuple satisfying t2.j ≥
t1.j − c1 (Line 5). If those two tuples can match, we write the
join record Join(t1, t2) to the output table Tout (Line 7) and
retrieve the next tuple from T2 as t2 (Line 9). To ensure the
obliviousness, we also perform a dummy retrieval from T1 (Line
8). We repeat the process above until the newly retrieved t2 does
not match the current t1. Once they do not match, we write out
a dummy record (Line 11) and step into the next iteration. The
final step is to obliviously filter out dummy records from Tout
and only keep real join records (Line 13).

Example 5: An example is given in Fig. 5 . When we retrieve
tuple t1 ← T1(1, 2) from T1 (Line 4), we first retrieve tuple t2

Fig. 5. Example of index nested-loop join with ORAMs.

Fig. 6. Example of oblivious multiway equi-join.

← T2(1, 3) from T2, which is the first tuple satisfying t2.j ≥
t1.j − c1 (Line 5). While t1 can match t2, we keep writing out
the join record Join(t1, t2) (Line 7) and retrieving the succeeding
tuplesT2(2, 2) andT2(2, 4) fromT2 as the new t2 (Line 9). Once
the newly retrieved t2 ← T2(5, 3) does not match t1 = T1(1, 2),
we step into the next iteration and process the next tuple t1 ←
T1(3, 1) from T1. In particular, once we cannot find any tuple
needed from T2, we retrieve a dummy tuple ⊥ from T2 and
logically let the matching result be false (e.g., the last two rows
in Join Comparison in Fig. 5). The final step is to obliviously
filter out dummy records from Tout (Line 13).

Theorem 2: For any two input tables T1 and T2 and the real
join result Rreal, let Numjs be the number of join steps. It is a
function of |T1|, |T2| and |Rreal|. Specifically, we have

Numjs = f(|T1|, |T2|, |Rreal|) = |T1|+ |Rreal|.

VI. OBLIVIOUS MULTIWAY EQUI-JOIN

We extend our Algorithm 4 to support acyclic multiway equi-
joins obliviously. The key idea is to avoid retrieving tuples that
make no contribution to the final join result to bound the total
number of block accesses.

Example 6: Fig. 6 shows an example of acyclic multiway
equi-join over four tables T1-T4. Due to the acyclicity, each
input table can be arranged as a node in a join tree. In this tree,
for any different tables Ti, Tj , Tk, if Tk is on the path from Ti

to Tj , we must have Attr(Ti) ∩Attr(Tj) ⊆ Attr(Tk) for their
attribute sets. The algorithm of building a join tree is presented
in [81]. We number input tables in a pre-order traversal of the
join tree. It ensures i < j, if Ti is an ancestor table of Tj . We
also denote the parent table of Ti in the join tree as Tp(i).

In our index nested-loop join algorithm, the outer loop is to
iterate over each tuple in root table T1. Each time we retrieve
a new tuple (e.g., T1(1, 1)) from T1, we search matched tuples
(e.g., T2(1, 1), T3(1, 4), . . .) from T2, . . ., T�. To ensure the
obliviousness, we retrieve the tuple needed from each input table
in a round-robin way and add dummy retrievals as necessary
(e.g., retrieve ⊥ from T4, due to no tuple with join key D ≥ 4
for matching T3(1, 4), as highlighted in yellow in Fig. 6). In

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

1836 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

each step, if there is a match (e.g., in 4th and 7th join step), we
output the join record; otherwise, we output a dummy record.

To bound the total number of join steps, we make the following
observations to avoid retrieving unnecessary tuples.

Observation 1: For any non-root table Tj and its parent table
Tp(j), tuple[p(j)] in Tp(j) makes no contribution to the final join
result, if no tuple in Tj matches tuple[p(j)]. Then, tuple[p(j)]
can be safely disabled (i.e., will not be accessed in the future).

For example, for table T4 and tuple T3(1, 4) in parent table
T3, we find no tuple in T4 matches T3(1, 4) (in 1st join step).
Hence, T3(1, 4) makes no contribution to the final join result,
and can be safely disabled in an additional dummy join step (in
2nd join step). In this dummy step, we perform a dummy tuple
retrieval from each input table except T3. For T3, we perform
a tuple disabling operation, which is indistinguishable from a
tuple retrieval based on the access patterns.

When disabling any tuple, we mark its leaf entry as disabled
using an additional boolean tag. If all entries in any B-tree
leaf block have been marked as disabled, the parent entry in
the B-tree parent block will also be marked as disabled. This
can recursively go up to B-tree root block. Since the recursion
goes up along a B-tree path, we can still finish each disabling
operation using some additional B-tree path access through
ORAM (i.e., adding some dummy join step). When retrieving a
new tuple from any input table, we skip disabled entries during
searching over B-tree index.

Observation 2: For any non-root table Tj and its parent table
Tp(j), tuple[p(j)] in Tp(j) makes no contribution to the final
join result, if each tuple in Tj that matches tuple[p(j)] has been
disabled. Then, tuple[p(j)] can also be safely disabled.

For example, for tableT3 and tupleT1(1, 1) in parent tableT1,
T3(1, 4) is the only tuple in T3 that matches T1(1, 1). However,
since T3(1, 4) has been disabled (in 2nd join step), we know
that T1(1, 1) makes no contribution to the final join result. If
the parent tuple is in a non-root table, we will disable it by
adding some dummy join step as above. Otherwise, we do not
physically disable any tuple in root table T1, since the outer loop
in our algorithm iterates over each tuple in root table T1, and will
not access any previous tuple in T1 in the future.

Observation 3: For any non-root table Tj and its parent
table Tp(j), tuple[p(j)] in Tp(j) will have no more matches,
if the current tuple tuple[j] in Tj matches tuple[p(j)] but the
succeeding tuple in Tj has a different join key from tuple[j]’s.

Observation 3 is based on the property of equi-joins. For
example, for table T3 and tuple T1(1, 1) in parent table T1,
we find that T3(1, 4) can match T1(1, 1) (in 1st join step). But
since the succeeding tuple T3(2, 1) has a different join key
from T3(1, 4), we can conclude that T3(2, 1) does not match
T1(1, 1) in equi-join scenario. Hence,T1(1, 1)will have no more
matches.

To perform this optimization, we attach another boolean tag
to each leaf entry, which indicates whether the next leaf entry in
Tj has the same key with the current entry in Tj . If not, we do
not retrieve the next tuple from the child table Tj .

After the normal join process, we pad the number of join steps
to the upper bound (e.g., the last step in Fig. 6) in Theorem 3
to ensure the obliviousness. Finally, we obliviously filter out
dummy records and only keep real join records. The last step is
to go over all index blocks and reset boolean tags in each entry.

In brief, tuple disabling operations will introduce some ad-
ditional dummy join steps, but we can still bound the total
number of join steps in Theorem 3. Besides, tuple disabling

operations also bring the overhead of resetting the boolean
tags after answering each join query. However, the total time
complexity is dominated by regular join steps and final oblivious
filtering. Hence, the time cost of resetting the boolean tags is
relatively small in oblivious join processing.

Theorem 3: For any � (� ≥ 2) input tables T1, . . ., T� and the
real join result Rreal, let Numjs be the number of join steps. It
is a function of |T1|, . . ., |T�| and |Rreal|. Specifically, we have

Numjs=f(|T1|, . . . , |T�|, |Rreal|)= |T1|+2

�∑

j=2

|Tj |+ |Rreal|.

VII. DISCUSSION ON ONE ORAM SETTING

In this work, we separate one single ORAM into multiple
smaller ORAMs (aka SepORAM setting). Now, we reconsider
the optimization in OneORAM setting.

Since we retrieve all the tuples through one single ORAM,
an optimization in OneORAM is to safely remove some dummy
tuple retrievals to speed up join processing. To ensure the obliv-
iousness, we must write out a real or dummy join record after
each tuple retrieval in OneORAM (rather than after each join
step in SepORAM). Then, we must pay the same number of
ORAM accesses between writing out any two join records. In
other words, we must pad the number of ORAM accesses to
the maximum height of B-tree indices in OneORAM. Note that
each tuple retrieval from any input table will be indistinguishable
for the adversary, although he knows the total number of tuple
retrievals. We can bound the total number of tuple retrievals in
OneORAM, as long as it only pertains to the input and output
sizes, and no additional information will be leaked.

However, there is a major drawback in OneORAM setting.
Suppose there are multiple tables in the whole dataset, but only
a few binary joins will be processed online. In this scenario,
we must put all input tables into one single ORAM in advance,
since we do not know the online workload. Hence, we have to
pay much larger cost for accessing the large single ORAM rather
than smaller separate ORAMs.

VIII. SECURITY ANALYSIS

We formalize our security guarantee in Theorem 4 with
the same notations in Definition 1. As with Opaque [12] and
ObliDB [32], our security is guaranteed by the existence of
simulator SIM such that for any probabilistic polynomial-time
(PPT) adversaryA,A cannot distinguish between the real server
location trace from our method and the simulated trace from
simulator SIM. Since SIM only sees what we want to leak, A
cannot learn any additional information. A brief description on
specifics of simulated traces from SIM is given in the proof of
Theorem 4.

In our setting, SIM only has the access to the schema and
sizing information of input and output tables, the oblivious join
operator, and some specific public constants (e.g., the number
of outsourced levels in each B-tree index, denoted as Δ). Note
that SIM has no access to the sizes of all intermediate join tables,
since we protect this sensitive information against the adversary.

Theorem 4: For any relational database D, schema Sch(D),
join query Q, oblivious join algorithm OJoin, and security
parameter λ, there is a polynomial-time simulator SIM such that
for any PPT adversary A,

|Pr[A(SIM(Size(D), Sch(D), IOSize(D,Q),

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: TOWARDS PRACTICAL OBLIVIOUS JOIN PROCESSING 1837

OJoin(D,Q)))⇒ 1]

−Pr[A(Trace(OJoin(D,Q)))⇒ 1]| ≤ negl(λ).

Proof (Informal Sketch): In this proof, we show the ex-
istence of simulator SIM, and argue that access pattern of
SIM is distributed indistinguishable from Trace(OJoin(D,Q))
(generated from algorithm OJoin(D,Q)). SIM reads algorithm
OJoin(D,Q) to determine which operations to simulate.

For Oblivious Join without ORAMs:
The security proof is similar to that of Krastnikov et al.

[31] and Arasu and Kaushik [13]. First, the process of our join
algorithm OJoin(D,Q) guarantees that each intermediate table
size only pertains to the input and output sizes IOSize(D,Q).
Then, we consider how SIM simulates the access patterns for
the operations in OJoin(D,Q) as follows.
� Oblivious Sorting and Linear Scan: These two operations

access the blocks in a fixed, predefined order. Hence,
SIM can simulate the access patterns, given the access to
Sch(D), Size(D) and IOSize(D,Q).

� Table Augmentation: For each iteration in Table Augmen-
tation, we read an input tuple, compute and add derived
attributes, and write out the output tuple. As with linear
scan, SIM can simulate the access patterns, given Sch(D),
Size(D) and IOSize(D,Q).

� Union of Tables: For each iteration in Union of Tables,
we read a tuple from one input table and write it out to
the output table. As with linear scan, SIM can simulate the
access patterns, given Sch(D), Size(D) and IOSize(D,Q).

� Filling Position: Filling Position (Fill-Pos(·) in Algorithm
1) operation scans the input tuples while maintaining a
counter in private client. The counter will be incremented
once we meet specific tuples. For each input tuple, we
assign the counter to a new attribute pos and write out the
updated tuple. Hence, the access pattern simulation can be
reduced to Table Augmentation.

� Table Expansion: We adopt Algorithm 4 in [31] to support
Table Expansion operation. SIM can simulate the access
patterns as in [31].

� Table Alignment: Table Alignment sorts and scans the
expanded tables. For each iteration in the scan, we read two
input tuples, concatenate their (j, d) attributes and write out
one join record. Hence, the access pattern simulation can
be reduced to Oblivious Sorting, Linear Scan, and Table
Augmentation.

For Oblivious Join with ORAMs:
SIM needs to simulate access patterns for ORAM opera-

tions and oblivious filter operations (including oblivious com-
paction/sorting, and a few linear scans) in OJoin(D,Q).

This proof is covered by Arguments 1–4. We mainly focus on
separate ORAMs setting (denoted as SepORAM) in Arguments
1–3. For one ORAM setting (denoted as OneORAM), the proof
relies on Argument 4: OneORAM does not introduce any more
privacy leakage than SepORAM.

Argument 1: We ensure the obliviousness in each join step.
First, we argue that SIM can simulate each ORAM or obliv-

ious filtering operation. Since SIM has the access to schema
Sch(D) and sizing information Size(D), the access pattern
simulation for each of such operations is the same as that
in the original ORAM scheme, or that for original oblivious
compaction/sorting and linear scan operations.

Then, we argue that SIM can simulate each join step. In
SepORAM, we keep the invariant that we always retrieve the
tuples needed from each input table in a round-robin way in each

join step. Even if we do not need to retrieve any new tuple, we
still retrieve a dummy tuple to ensure the obliviousness. At the
end of each join step, if there is a match, we write out a join
record to the output table; otherwise, we write out a dummy
record as necessary. Specifically, each tuple retrieval for any
input table leads to the same number of ORAM accesses, which
only pertains to the height of the outsourcedB-tree index. In each
join step, since SIM has the access to specific public constants
(e.g., the number of outsourced levels in each B-tree index),
SIM can perform the corresponding number of ORAM operation
simulations for each input table in a round-robin way and output
a (randomized encrypted) join record.

Argument 2: We ensure the number of join steps only pertains
to the input and output sizes.

In SepORAM, Theorems 1–3 guarantee that the number of
join steps in algorithm OJoin(D,Q) only pertains to the input
and output sizes IOSize(D,Q). Since SIM has the access to
IOSize(D,Q), SIM will know the number of join steps based on
IOSize(D,Q), and perform the corresponding number of join
step simulations.

Argument 3: Arguments 1 and 2 ensure the simulated access
pattern is indistinguishable from Trace(OJoin(D,Q)) in the
whole process (i.e., the obliviousness in SepORAM).

Argument 4: OneORAM does not introduce any more privacy
leakage than SepORAM.

For each step in OneORAM, algorithmOJoin(D,Q) retrieves
the tuple needed from an input table through the single ORAM,
and pads the number of ORAM accesses to the maximum length
of all retrieved B-tree paths. It ensures that each tuple retrieval
from any input table will be indistinguishable for the adver-
sary. Note that OJoin(D,Q) may remove some dummy tuple
retrievals, as long as total number of tuple retrievals only pertains
to the input and output sizes IOSize(D,Q). Then, after each
tuple retrieval in OneORAM (rather than after each join step in
SepORAM), we ensure to write out a real or dummy join record
to the output table, to protect the join degree information and
ensure the full obliviousness. The simulation is similar to that
in SepORAM, since SIM still has the access to the background
knowledge.

Theorem 4 guarantees our security in the sense of Definition 1.
For binary joins, our security guarantee is the same as Krastnikov
et al. [31] and oblivious mode in Opaque [12] and ObliDB [32].
For multiway joins, our security guarantee is the same as Arasu
and Kaushik [13].

The simulator SIM’ for padded mode behaves analogously to
SIM. In padded mode, the security theorem replaces the final
join output size with an upper bound size as a public parameter
in simulator SIM, which indicates the padded output size.

IX. EXPERIMENTAL RESULTS

A. Experimental Setup and Datasets

We make the evaluation for ObliDB [32], ODBJ [31] and our
ORAM approach. For ODBJ, we extend its implementation [82]
to support general band joins. We adopt two oblivious sorting
algorithms including oblivious external bitonic sorting [46]
(denoted as ODBJ (Bitonic)) and oblivious heap sorting [28]
(denoted as ODBJ (Heap)). For our ORAM approach, we have
two settings: SepORAM and OneORAM. Each setting includes
three algorithms: SMJ, INLJ and INLJ+Cache (see Table I). In
“+Cache” mode, the client caches all index blocks above the leaf
level, i.e., Δ = 1 (see Table II).

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

1838 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Fig. 7. Storage cost against raw data size on TPC-H.

Fig. 8. Storage cost against raw data size on social graph.

Fig. 9. Performance of binary equi-join on TPC-H.

We also compare our method with an insecure baseline (Raw
Index(+Cache)). It builds B-tree indices over data blocks and
stores them in the cloud without encryption.

Setup: The client is an Ubuntu 18.04 machine with 18 GB
memory. The server is an Ubuntu 18.04 machine with 256 GB
memory and 2 TB hard disk. The bandwidth is 1 Gbps.

Default parameter values: We set block size B = 4 KB, as
in [11], [40], [54]. We set trusted memory size M = 2B (B is
block size) in ODBJ and our method, but set M = 50 logN in
ObliDB to make it finish in a reasonable period.

We evaluate the methods on the following two datasets.
TPC-H: We set default data size to 100 MB and vary data sizes

from 10 MB to 1 GB in TPC-H benchmark. Query TE1-TE3
and Query TM1-TM3 come from the conference version [50].
Appendix A, available online shows Query TB1-TB2 in SQL.
� Query TE1-TE3: general equi-joins over 2 tables.
� Query TB1-TB2: general band joins over 2 tables.
� Query TM1-TM3: general multiway joins over 3-5 tables.
Social graph: Social graph [83], [84] contains twitter friend-

ship links. We set default user number to 20,000 (with raw data
size 4.5 MB) and vary user numbers from 5,000 to 200,000 (with
raw data size from 1.3 MB to 58 MB). The following queries
come from the conference version [50].
� Query SE1-SE3: general equi-joins over 2 tables.
� Query SM1-SM3: general multiway joins over 3-4 tables.
Remarks: The query cost for each method should be roughly

proportional to the communication cost. It is confirmed by our
experimental results (see Figs. 9–16). For simplicity, we mainly
focus on experimental results for query cost.

Fig. 10. Performance of binary equi-join on social graph.

Fig. 11. Performance of Query TE2 against raw data size.

Fig. 12. Performance of Query SE2 against raw data size.

Fig. 13. Performance of band join on TPC-H.

B. Cloud and Client Storage Costs

Figs. 7(a) and 8(a) show cloud storage cost on two datasets.
ObliDB and ODBJ achieve the minimum cloud storage cost,
since they only store encrypted data blocks. Raw Index(+Cache)
needs a little more cost for storing index blocks. ORAM based
method has roughly 10X larger cost than Raw Index(+Cache),
due to building ORAM data structure.

Figs. 7(b) and 8(b) show client memory size on two datasets.
ODBJ achieves the minimum cost, since the client always
keeps a constant number of blocks. For Raw Index(+Cache),
the client also keeps a few more blocks along retrieved B-tree
paths and may cache some index blocks. For ObliDB, we set
trusted memory size M = 50 logN and make it finish as soon
as possible. For ORAM based method, the client memory cost
grows (roughly) linearly with raw data size, due to O(N/B)
blocks in the position map.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: TOWARDS PRACTICAL OBLIVIOUS JOIN PROCESSING 1839

Fig. 14. Performance of Query TB1 against raw data size.

Fig. 15. Performance of multiway equi-join on TPC-H.

Fig. 16. Performance of multiway equi-join on social graph.

Fig. 17. Padded versus non-padded mode (binary equi-join).

Fig. 18. Padded versus non-padded mode (band join).

C. Performance of Binary Equi-Join

1) Default Setting: Figs. 9(a) and 10(a) show query cost for
binary equi-join in default setting. Our SepORAM(+Cache)
achieves 2X-3X and 50X-3000X better performances than
ObliDB on TPC-H and social graph, since our query cost de-
pends on input and output sizes linearly. The speedup difference

Fig. 19. Padded versus non-padded mode (multiway equi-join).

is mainly due to the join result size, which grows with square of
input size on TPC-H but is comparable with input size on social
graph.

Our SepORAM(+Cache) brings 90X-450X larger query cost
than Raw Index(+Cache) except for Query SE1, and also brings
7X-15X and 40X-160X larger query cost on TPC-H and so-
cial graph than ODBJ (Bitonic) except for Query SE1. The
major reason is that data tuple size is much less than block
size. For index based methods (Raw Index(+Cache) and ours),
only one index entry or data tuple in each retrieved block
contributes to the join processing. For ODBJ method, ODBJ
(Heap) brings 4X-9X and 25X-37X larger query cost on TPC-H
and social graph than ODBJ (Bitonic), since oblivious heap
sort [28] works better in memory but does not achieve good
IO performance. In contrast, oblivious external bitonic sort [46]
is more IO-efficient. Note that data tuple size is much less than
block size on both datasets, even if the trusted memory contains
only two blocks, the trusted memory actually holds decades of
tuples.

In particular, Query SE1 joins a small table with a large one
but generates few join records. Sep SMJ and Sep INLJ(+Cache)
bring 2400X and 30X larger cost than Raw Index(+Cache)
algorithms. Sep INLJ(+Cache) even achieves 1.7X-2.7X better
performance than ODBJ (Bitonic). The reason is that query cost
of Sep INLJ(+Cache) increases with large table size logarith-
mically, while that of Sep SMJ and ODBJ increases with large
table size linearly (see Table I).

For our ORAM based method, Sep INLJ achieves 1.2X-2.6X
better performance than One INLJ. As explained in Section VII,
One INLJ(+Cache) has to pad the number of ORAM accesses
for each tuple retrieval to the maximum length of outsourced
B-tree paths, although this problem can be alleviated by index
caching. One SMJ does not need padding, since the client always
accesses an index block and then a data block for each tuple
retrieval through ORAM. One SMJ even achieves 1.6X better
performance than Sep SMJ on Query SE2 and SE3, due to
less number of tuple retrievals based on the optimization in
Section VII. Last, the index caching brings 1.2X-1.6X speedup
ratio.

2) Scalability: Figs. 11(a) and 12(a) show query cost for
Query TE2 and SE2 against raw data size. Our SepO-
RAM(+Cache) achieves 2X-4X and 1600X-16000X better per-
formances than ObliDB for Query TE2 and SE2, when raw data
size increases from the minimum to the maximum. The speedup
difference for two queries is still on account of the join result
size, as explained in Section IX-C1. Compared with Raw In-
dex(+Cache), SepORAM(+Cache) brings 75X-157X and 161X-
409X larger query cost on Query TE2 and SE2. Compared
with ODBJ (Bitonic), SepORAM(+Cache) brings 10X-20X and
30X-140X larger query cost on Query TE2 and SE2. The major

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

1840 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Fig. 20. Access pattern of our oblivious band join algorithm in ODBJ (Bitonic).

Fig. 21. Access pattern of our oblivious multiway equi-join algorithm.

reason is still that data tuple size is much less than the block size,
as explained in Section IX-C1. For ODBJ method, ODBJ (Heap)
brings 5X-15X and 16X-37X larger query cost on Query TE2
and SE2 than ODBJ (Bitonic), since oblivious heap sort [28] is
suitable in memory but not IO-efficient. For our method, Sep
INLJ achieves 1.1X-3.4X better performance than One INLJ,
as explained in Section IX-C1. As in Section IX-C1, One SMJ
achieves 1.4X-1.7X better performance than Sep SMJ on Query
SE2 due to less number of tuple retrievals. Last, the index
caching brings 1.2X-2.0X speedup ratio.

D. Performance of Band Join

Fig. 13(a) shows query cost for band join on TPC-H in default
setting. Compared with Raw INLJ(+Cache), our extended ODBJ
(Bitonic) brings 30X and 58X larger query cost on Query TB1
and TB2, and Sep INLJ(+Cache) brings 164X and 288X larger
query cost on Query TB1 and TB2. For extended ODBJ method,
ODBJ (Heap) brings 9X and 5X larger query cost on Query TB1
and TB2 than ODBJ (Bitonic), as explained in Section IX-C.
For ORAM based method, Sep INLJ achieves 1.4X-2.5X better
performance than One INLJ, as explained in Section IX-C.
The index caching brings 1.2X-1.5X better performance. Fig.
14(a) shows query cost on Query TB1 against raw data size.
When raw data size varies from 20 MB to 1 GB, our extended
ODBJ (Bitonic) and Sep INLJ(+Cache) bring 15X-66X and
73X-264X larger query cost on Query TB1 compared with
Raw INLJ(+Cache). For extended ODBJ method, ODBJ (Heap)
brings 5X-15X larger query cost on Query TB1 than ODBJ
(Bitonic). For ORAM based method, Sep INLJ achieves 1.9X-
2.9X better performance than One INLJ, and index caching
achieves 1.2X-1.5X better performance.

E. Performance of Multiway Equi-Join

1) Default Setting: Figs. 15(a) and 16(a) show query cost for
multiway equi-join on two datasets in default setting. Our Sep
INLJ(+Cache) achieves 106X-1011X better performance than
ObliDB on all queries except Query TM2. The reason is that
our query cost is roughly linear with input and output sizes, but

ObliDB has to perform a Cartesian product. For Query TM2, the
speedup ratio goes down to 280X, since the join result size is
roughly proportional to Cartesian product size. Compared with
Raw INLJ(+Cache), Sep INLJ(+Cache) brings 185X-985X and
37000X-70000X larger query cost on TPC-H and social graph,
due to ensuring the obliviousness. For our method, Sep INLJ
achieves 1.6X-5.5X better performance than One INLJ, since
One INLJ has to access the large single ORAM. Last, index
caching brings 1.1X-1.5X speedup ratio.

F. Padded Mode Versus Non-Padded Mode

We also make the comparison between padded mode and
non-padded mode for all secured methods. We discuss three
padding strategies for join result size: (1) no padding (denoted
as Real Size); (2) padding to closest power of 2 (denoted as
Closest Power) [74], [75], [76]; (3) padding to Cartesian product
(denoted as Cartesian Product).

Figs. 17–19 show query cost against different padding strate-
gies in default setting. For ObliDB, Cartesian Product even
achieves 5X less query cost than Real Size and Closest Power,
since Real Size and Closest Power need an additional oblivious
filtering over the join output with Cartesian product size. For
ODBJ and ORAM based method, query cost is roughly propor-
tional to different ratios of padded join sizes to real join sizes,
e.g., Closest Power introduces within 2X larger query cost than
Real Size, due to padding to closest power of 2. In Cartesian
Product, ODBJ (Bitonic) needs 40X-50X larger query cost
than ObliDB, and ORAM based method brings 500X-1700X
and 900X-5300X larger query cost on binary and multiway
equi-joins than ObliDB. The first reason is that ODBJ and
ORAM based method incur Ω(logN)bandwidth overhead to
ensure the obliviousness. The second reason is that we set trusted
memory size M = 50 logN in ObliDB. In Cartesian Product,
ODBJ (Heap) even achieves 2X and 4X better performance on
Query TE2 and SE2 than ODBJ (Bitonic), since oblivious heap
sort [28] achieves lower time complexity than external bitonic
sort (O(N logN) versus O(N log2(N/M))), especially when
the join output size is huge.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: TOWARDS PRACTICAL OBLIVIOUS JOIN PROCESSING 1841

G. Access Pattern Logs

For security analysis, we verify the obliviousness of our
method by comparing the logs of access patterns for different
inputs, as with “Experiments: Memory Access Logs” paragraph
in Section VI.A in [31]. We also visualize the access patterns in
Figs. 20 and 21, as with Fig. 7 in [31]. Fig. 20 shows the access
pattern of our extended oblivious band join algorithm in ODBJ
(Bitonic). It joins T1 and T2 of size 4 into Tout of size 9, as
with Examples 2 and 3. Specifically, horizontal axis means the
discretized time, and vertical axis means the tuple index. Each
light bar means a tuple read, and each dark bar means a tuple
write. Fig. 21 shows the access pattern of oblivious multiway
equi-join algorithm (without index caching). It joins 4 tables
with |T1| = |T2| = 4 and |T3| = |T4| = 3 into Tout of size 2, as
with Example 6. Each B-tree index for T1-T4 has 3 levels: root
node level, leaf entry level, and data tuple level. Specifically,
horizontal axis means the discretized time. For T1-T4, vertical
axis means the index level in B-tree for T1-T4; each light bar
means an ORAM read, and each dark bar means an ORAM
write. For Tout, vertical axis means the record index; each light
bar means a record read, and each dark bar means a record write.
We have verified that given the specific input and output sizes
ranging from 10 to 10,000, the tests for different input tuples
produce the same logs of access patterns.

X. CONCLUSION

This work supports general band joins and multiway equi-
joins obliviously based on non-ORAM approach [31] and
ORAM approach [50]. Non-ORAM approach stores input ta-
bles in flat storage and achieves better performance in join
processing, but needs some delicate design of oblivious op-
erations. ORAM approach builds oblivious indices over input
tables directly, but usually brings larger computation overhead
in join processing. As with ObliDB [32], accessing a few rows
in any table should use the indexed storage, while the flat
storage performs better for accessing large segments. Hence, to
design the query optimizer for different approaches is a crucial
point in building encrypted or oblivious databases. Note that
our current design does not address challenges associated with
ad-hoc updates, which is a future direction. Last, how to support
query concurrency in an efficient manner using ORAM is still a
major challenge.

REFERENCES

[1] A. Arasu, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, and R. Rama-
murthy, “Transaction processing on confidential data using Cipherbase,”
in Proc. IEEE Int. Conf. Data Eng., 2015, pp. 435–446.

[2] A. Arasu et al., “Secure database-as-a-service with Cipherbase,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 1033–1036.

[3] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query processing,”
in Proc. Symp. Operating Syst. Princ., 2011, pp. 85–100.

[4] S. Bajaj and R. Sion, “TrustedDB: A trusted hardware-based database with
privacy and data confidentiality,” IEEE Trans. Knowl. Data Eng., vol. 26,
no. 3, pp. 752–765, Mar. 2014.

[5] Z. He et al., “SDB: A secure query processing system with data inter-
operability,” in Proc. VLDB Endowment, vol. 8, no. 12, pp. 1876–1879,
2015.

[6] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing ana-
lytical queries over encrypted data,” in Proc. VLDB Endowment, vol. 6,
no. 5, pp. 289–300, 2013.

[7] A. Arasu, K. Eguro, R. Kaushik, and R. Ramamurthy, “Querying encrypted
data,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014, pp. 1259–
1261.

[8] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra, “Executing SQL over
encrypted data in the database-service-provider model,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2002, pp. 216–227.

[9] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in Proc.
IEEE Int. Conf. Data Eng., 2013, pp. 733–744.

[10] W. K. Wong, B. Kao, D. W. Cheung, R. Li, and S. Yiu, “Secure query
processing with data interoperability in a cloud database environment,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014, pp. 1395–1406.

[11] Z. Chang, D. Xie, and F. Li, “Oblivious RAM: A dissection and experimen-
tal evaluation,” in Proc. VLDB Endowment, vol. 9, no. 12, pp. 1113–1124,
2016.

[12] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in Proc. 14th USENIX Conf. Netw. Syst. Des. Implementation,
2017, pp. 283–298.

[13] A. Arasu and R. Kaushik, “Oblivious query processing,” in Proc. 17th Int.
Conf. Database Theory, 2014, pp. 26–37.

[14] T. Hoang, C. D. Ozkaptan, G. Hackebeil, and A. A. Yavuz, “Efficient
oblivious data structures for database services on the cloud,” IEEE Trans.
Cloud Comput., vol. 9, no. 2, pp. 598–609, Second Quarter 2018.

[15] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2015, pp. 644–655.

[16] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2015, pp. 668–679.

[17] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks
on secure outsourced databases,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 1329–1340.

[18] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shmatikov,
“The tao of inference in privacy-protected databases,” in Proc. VLDB
Endowment, vol. 11, no. 11, pp. 1715–1728, 2018.

[19] B. Pinkas and T. Reinman, “Oblivious RAM revisited,” in Proc. 30th Annu.
Cryptol. Conf., 2010, pp. 502–519.

[20] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2012.

[21] O. Goldreich, “Towards a theory of software protection and simulation by
oblivious RAMs,” in Proc. 19th Annu. ACM Symp. Theory Comput., 1987,
pp. 182–194.

[22] R. Ostrovsky, “Efficient computation on oblivious RAMs,” in Proc. Annu.
ACM Symp. Theory Comput., 1990, pp. 514–523.

[23] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[24] M. Keller and P. Scholl, “Efficient, oblivious data structures for MPC,”
in Proc. 20th Int. Conf. Theory Appl. Cryptol Inf. Secur., Part II, 2014,
pp. 506–525.

[25] X. S. Wang et al., “Oblivious data structures,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2014, pp. 215–226.

[26] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An
efficient oblivious search index,” in Proc. IEEE Symp. Secur. Privacy,
2018, pp. 279–296.

[27] T. Hoang, M. O. Ozmen, Y. Jang, and A. A. Yavuz, “Hardware-supported
ORAM in effect: Practical oblivious search and update on very large
dataset,” in Proc. Priv. Enhancing Technol., vol. 2019, no. 1, pp. 172–191,
2019.

[28] E. Shi, “Path oblivious heap: Optimal and practical oblivious priority
queue,” in Proc. IEEE Symp. Secur. Privacy, 2020, pp. 842–858.

[29] Z. Jafargholi, K. G. Larsen, and M. Simkin, “Optimal oblivious priority
queues,” in Proc. ACM-SIAM Symp. Discrete Algorithms, 2021, pp. 2366–
2383.

[30] Y. Li and M. Chen, “Privacy preserving joins,” in Proc. IEEE Int. Conf.
Data Eng., 2008, pp. 1352–1354.

[31] S. Krastnikov, F. Kerschbaum, and D. Stebila, “Efficient oblivious database
joins,” in Proc. VLDB Endowment, vol. 13, no. 11, pp. 2132–2145,
2020.

[32] S. Eskandarian and M. Zaharia, “ObliDB: Oblivious query processing for
secure databases,” in Proc. VLDB Endowment, vol. 13, no. 2, pp. 169–183,
2019.

[33] M. T. Goodrich, “Data-oblivious external-memory algorithms for
the compaction, selection, and sorting of outsourced data,” in
Proc. Annu. ACM Symp. Parallelism Algorithms Architectures, 2011,
pp. 379–388.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

1842 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

[34] D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “An evaluation of
non-equijoin algorithms,” in Proc. 17th Int. Conf. Very Large Data Bases,
1991, pp. 443–452.

[35] L. Ren et al., “Constants count: Practical improvements to oblivious
RAM,” in Proc. USENIX Secur., Symp., 2015, pp. 415–430.

[36] H. Chen, I. Chillotti, and L. Ren, “Onion ring ORAM: Efficient constant
bandwidth oblivious RAM from (leveled) TFHE,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2019, pp. 345–360.

[37] G. Asharov, I. Komargodski, W. Lin, K. Nayak, E. Peserico, and E. Shi,
“OptORAMa: Optimal oblivious RAM,” in Proc. 39th Annu. Int. Conf.
Theory Appl. Cryptogr. Techn., Part II, 2020, pp. 403–432.

[38] P. Williams, R. Sion, and A. Tomescu, “PrivateFS: A parallel oblivious
file system,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2012,
pp. 977–988.

[39] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman,
“Shroud: Ensuring private access to large-scale data in the data center,” in
Proc. 11th USENIX Conf. File Storage Technol., 2013, pp. 199–214.

[40] E. Stefanov and E. Shi, “ObliviStore: High performance oblivious cloud
storage,” in Proc. IEEE Symp. Secur. Privacy, 2013, pp. 253–267.

[41] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang, “Practicing
oblivious access on cloud storage: The gap, the fallacy, and the new way
forward,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 837–849.

[42] C. Sahin, V. Zakhary, A. E. Abbadi, H. Lin, and S. Tessaro, “TaoStore:
Overcoming asynchronicity in oblivious data storage,” in Proc. IEEE
Symp. Secur. Privacy, 2016, pp. 198–217.

[43] A. Chakraborti and R. Sion, “ConcurORAM: High-throughput stateless
parallel multi-client ORAM,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2019.

[44] S. Maiyya et al., “QuORAM: A quorum-replicated fault tolerant ORAM
datastore,” in Proc. USENIX Secur. Symp., 2022, pp. 3665–3682.

[45] E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM
protocol,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2013,
pp. 299–310.

[46] K. E. Batcher, “Sorting networks and their applications,” in Proc. AFIPS
Spring Joint Comput. Conf., 1968, pp. 307–314.

[47] M. Ajtai, J. Komlós, and E. Szemerédi, “An O(n logn) sorting network,”
in Proc. 15th Annu. ACM Symp. Theory Comput., 1983, pp. 1–9.

[48] M. T. Goodrich, “Randomized Shellsort: A simple oblivious sorting algo-
rithm,” in Proc. 21st Annu. ACM-SIAM Symp. Discrete Algorithms, 2010,
pp. 1262–1277.

[49] M. T. Goodrich, “Zig-zag sort: A simple deterministic data-oblivious
sorting algorithm running in () time,” in Proc. Annu. ACM Symp. Theory
Comput., 2014, pp. 684–693.

[50] Z. Chang, D. Xie, S. Wang, and F. Li, “Towards practical oblivious join,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2022, pp. 803–817.

[51] Z. Chang, D. Xie, F. Li, J. M. Phillips, and R. Balasubramonian, “Efficient
oblivious query processing for range and kNN queries,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 12, pp. 5741–5754, Dec. 2022.

[52] M. Maas et al., “PHANTOM: Practical oblivious computation in a secure
processor,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2013,
pp. 311–324.

[53] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: Oblivious memory
primitives from intel SGX,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2018.

[54] D. Xie et al., “Practical private shortest path computation based on obliv-
ious storage,” in Proc. IEEE Int. Conf. Data Eng., 2016, pp. 361–372.

[55] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and L. Alvisi,
“Obladi: Oblivious serializable transactions in the cloud,” in Proc. USENIX
Conf. Operating Syst. Des. Implementation, 2018, pp. 727–743.

[56] A. Dave, C. Leung, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Oblivi-
ous coopetitive analytics using hardware enclaves,” in Proc. Eur. Conf.
Comput. Syst., 2020, pp. 39:1–39:17.

[57] E. Dauterman, V. Fang, I. Demertzis, N. Crooks, and R. A. Popa, “Snoopy:
Surpassing the scalability bottleneck of oblivious storage,” in Proc. Symp.
Operating Syst. Princ., 2021, pp. 655–671.

[58] S. Chu, D. Zhuo, E. Shi, and T. H. Chan, “Differentially oblivious database
joins: Overcoming the worst-case curse of fully oblivious algorithms,” in
Proc. 2nd Conf. Inf.-Theoretic Cryptogr., 2021, pp. 19:1–19:24.

[59] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptol. ePrint
Arch., vol. 2016, 2016, Art. no. 86.

[60] T. Kim, Z. Lin, and C. Tsai, “CCS’17 tutorial abstract: SGX security and
privacy,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017,
pp. 2613–2614.

[61] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi, “SCORAM:
Oblivious RAM for secure computation,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2014, pp. 191–202.

[62] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A
programming framework for secure computation,” in Proc. IEEE Symp.
Secur. Privacy, 2015, pp. 359–376.

[63] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers, “SM-
CQL: Secure query processing for private data networks,” in Proc. VLDB
Endowment, vol. 10, no. 6, pp. 673–684, 2017.

[64] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and A.
Bestavros, “Conclave: Secure multi-party computation on big data,” in
Proc. Eur. Conf. Comput. Syst., 2019, pp. 3:1–3:18.

[65] Y. Wang and K. Yi, “Secure yannakakis: Join-aggregate queries over
private data,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2021,
pp. 1969–1981.

[66] C. Sahin, T. Allard, R. Akbarinia, A. E. Abbadi, and E. Pacitti, “A
differentially private index for range query processing in clouds,” in Proc.
IEEE Int. Conf. Data Eng., 2018, pp. 857–868.

[67] Q. Ye, H. Hu, X. Meng, and H. Zheng, “PrivKV: Key-value data collection
with local differential privacy,” in Proc. IEEE Symp. Secur. Privacy, 2019,
pp. 317–331.

[68] N. M. Johnson, J. P. Near, and D. Song, “Towards practical differential
privacy for SQL queries,” in Proc. VLDB Endowment, vol. 11, no. 5,
pp. 526–539, 2018.

[69] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers,
“Shrinkwrap: Efficient SQL query processing in differentially private data
federations,” in Proc. VLDB Endowment, vol. 12, no. 3, pp. 307–320, 2018.

[70] I. Kotsogiannis et al., “PrivateSQL: A differentially private SQL query
engine,” in Proc. VLDB Endowment, vol. 12, no. 11, pp. 1371–1384, 2019.

[71] N. Wang et al., “Collecting and analyzing multidimensional data with local
differential privacy,” in Proc. IEEE Int. Conf. Data Eng., 2019, pp. 638–
649.

[72] T. Wang et al., “Answering multi-dimensional analytical queries under
local differential privacy,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2019, pp. 159–176.

[73] J. Yang, T. Wang, N. Li, X. Cheng, and S. Su, “Answering multi-
dimensional range queries under local differential privacy,” in Proc. VLDB
Endowment, vol. 14, no. 3, pp. 378–390, 2020.

[74] A. Chakraborti, A. J. Aviv, S. G. Choi, T. Mayberry, D. S. Roche, and R.
Sion, “rORAM: Efficient range ORAM with O(log2 N) locality,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2019.

[75] G. Asharov, T. H. Chan, K. Nayak, R. Pass, L. Ren, and E. Shi, “Locality-
preserving oblivious RAM,” in Proc. 8th Annu. Int. Conf. Theory Appl.
Cryptogr. Techn., Part II, 2019, pp. 214–243.

[76] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre, “SEAL:
Attack mitigation for encrypted databases via adjustable leakage,” in Proc.
USENIX Secur. Symp., 2020.

[77] C. W. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, and S. Devadas,
“Suppressing the oblivious RAM timing channel while making informa-
tion leakage and program efficiency trade-offs,” in Proc. Int. Symp. High
Perform. Comput. Architecture, 2014, pp. 213–224.

[78] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged
side-channel attacks in shielded execution with Déjà Vu,” in Proc. ACM
Asia Conf. Comput. Commun., 2017, pp. 7–18.

[79] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware trans-
actional memory,” in Proc. USENIX Secur. Symp., 2017, pp. 217–233.

[80] Z. Chang, D. Xie, S. Wang, F. Li, and Y. Shen, “Towards practical oblivious
join processing,” 2022. [Online]. Available: https://zhao-chang.github.io/
paper/ojoin.pdf

[81] C. T. Yu and M. Z. Ozsoyoglu, “An algorithm for tree-query membership
of a distributed query,” in Proc. IEEE Comput. Soc. 3rd Int. Comput. Softw.
Appl. Conf., 1979, pp. 306–312.

[82] “Oblivious database join algorithm,” 2020. [Online]. Available: https://git.
uwaterloo.ca/skrastni/obliv-join-impl

[83] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi, “Measuring user
influence in twitter: The million follower fallacy,” in Proc. 4th Int. Conf.
Weblogs Soc. Media, 2010.

[84] Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi, “Random sampling over
joins revisited,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2018,
pp. 1525–1539.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on March 27,2024 at 08:27:35 UTC from IEEE Xplore. Restrictions apply.

https://zhao-chang.github.io/paper/ojoin.pdf
https://zhao-chang.github.io/paper/ojoin.pdf
https://git.uwaterloo.ca/skrastni/obliv-join-impl
https://git.uwaterloo.ca/skrastni/obliv-join-impl

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

